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Abstract—The slowdown of Moore’s law and the end of
Dennard scaling created a demand for specialized accelerators,
including Field Programmable Gate Arrays (FPGAs), in cloud
data centers. At the same time, compute resources are increas-
ingly consumed via public and private clouds and traditional
applications are modernized using scalable microservices and
Function-as-a-Service (FaaS) offerings. Nonetheless, true FaaS
based on FPGAs or other accelerators is virtually absent from
the offering catalogs of all major cloud providers. In addition,
FPGA applications are typically coded in a monolithic fashion,
due to device and vendor specific dependencies, which reduces
the portability and usability of FPGA cloud offerings further.

However, FPGA-based FaaS can improve execution efficiency
and minimize (tail-) latencies while decreasing costs. We propose
a novel system architecture, called Mantle, that uses disaggre-
gated FPGAs to enable scalable, usable, portable and efficient
FaaS offerings for FPGAs. Our experimental results demonstrate
a significant reduction of end-to-end service provisioning time to
below 7 seconds and an increase in execution efficiency by a
factor of 4 with negligible overhead.

Index Terms—cloud computing, reconfigurable computing,
disaggregated FPGAs, Shell Role architecture, partial reconfig-
uration, FaaS, forward compatibility, dynamic ISA extensions

I. INTRODUCTION

Throughout the past few years, cloud computing has evolved
from simple online storage and web services into the new way
of providing any kind of IT service. While initially many com-
panies used cloud Infrastructure-as-a-Service (IaaS) to deploy
their applications, the emergence of microservices frameworks
and Function-as-a-service (FaaS) or serverless computing has
helped them to greatly simplify the development and opera-
tions (DevOps) of their cloud-based applications and services.
Today, serverless computing is offered by all major cloud
providers [1]–[4] and the underlying automation provided with
frameworks like Knative [5], with its building, serving and
eventing components, helps countless companies to efficiently
develop and deploy their cloud services and apps [6]–[8].

At the same time, the hardware powering today’s IaaS
offerings has evolved, too. Due to the limited performance and
efficiency gains provided by new generations of CPUs, new
compute architectures with innovations beyond technology
scaling were needed to sustain the performance and efficiency
gains demanded from every new generation [9]. This has
led to the emergence of accelerators ranging from GPUs
and Field Programmable Gate Arrays (FPGAs) all the way
to domain specific Application Specific Integrated Circuits
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Fig. 1. Closely-coupled vs. disaggregated FPGAs.

(ASICs) for Artificial Intelligence (AI) acceleration including
Googles TPU [10], Inferentia and Trainium chips from AWS
[11], [12], Intels‡ Habana series [13], Graphcore [14], or
Cerebras Wafer scale engine [15]. Consequently, in reaction
to this demand, IaaS offerings have been expanded to cover
accelerators [16]–[20]. One could assume that the two mega-
trends “serverless computing” and “heterogeneous, accelerated
IaaS” would seamlessly lead to new offerings for accelerated
serverless computing but this has not — yet — happened.

In this work we explore the missing components of FaaS
offerings for FPGA-based accelerators. FPGAs are increasing
in popularity, because they provide their users with unparal-
leled flexibility, due to their reconfigurable logic. For example,
FPGAs can accelerate a wide range of compute-intensive or
latency-sensitive workloads, such as deep learning, blockchain,
text processing, data analytic, or genetics [21]–[25]. In addi-
tion, FPGAs can beat GPUs in terms of performance for more
and more domains [26], [27] and most of the time in energy
efficiency [28]. We propose to use disaggregated FPGAs in
combination with a new Shell Role architecture to build a
cost and energy-efficient FaaS solution based on FPGAs.

II. PROBLEM STATEMENT

Figure 1 shows the spectrum of hardware platforms, which
could be used to offer IaaS based on FPGAs. The first
option is to offer bus-attached FPGAs, typically via Peripheral
Component Interconnect Express (PCIe), in combination with
a Virtual Machine (VM) in a closely-coupled fashion, as
depicted on the left hand side. This means that for each FPGA,
a VM must be booted and the network connection is mostly
routed via a peripheral Network Interface Card (NIC) and
managed by the CPU, as depicted in the lower left corner of
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Figure 1. This kind of deployment is used by cloud offerings
like AWS, Baidu or Xilinx Academic Cloud [18]–[20]. Using
these services therefore requires a “monolithic” application
that is dependent on the exact environment and FPGA device,
as shown in green on the left hand side of the figure. The
second way is to turn the FPGA as a standalone node and break
the close-coupling, including integrating the network interface
(iNIC) into the FPGA logic. This is depicted on the right hand
side of Figure 1. These disaggregated FPGAs were shown
to be beneficial in recent research [29]–[35]. In particular,
disaggregated FPGAs are more flexible, energy-efficient and
can be provisioned faster.

For FaaS based on FPGAs, we decided to focus on the
second approach, disaggregated FPGAs, building on the fol-
lowing observations: First, the integration of the network
and control path in the FPGA logic minimizes the latency
and code-path, because it cuts out the “detours” through
NICs, operating systems, or run-time environments. Second,
as we described in [32], a cloud vendor maintains full control
of a disaggregated platform if using partial reconfiguration
technology. Consequently, the eventing component of FaaS
frameworks will benefit from these low latencies. Third, the
serving unit can leverage the short startup times of disaggre-
gated FPGAs as well as the flexible combination of various
different types of disaggregated nodes. All of the above leads
to very short provisioning times and minimizes tail latencies,
subsequently.

Ideally, FPGAs could be deployed with small and vendor-
independent applications, similar to containers in the software
world, as it is highlighted on the right hand side of Figure
1. However, today’s disaggregated FPGA offerings still limit
the flexibility of developers, since applications are bound to
a specific type of device, or the device itself, as shown by
the grey monolithic app in the middle of the right hand
side of Figure 1. Also, the constraints that arise from the
disaggregation limit developers flexibility further [32].

Following our observations, we aim to solve this issues
and close the gap for “true” FPGA-based FaaS offerings. The
goal is to provide FPGAs in the cloud with similar flexibility
as container-based CPU platforms. In particular, the main
contributions of this research are:

1) Enable forward and backward compatibility on binary
level for FPGAs by presenting the Mantle architecture

2) Enhancing FPGA designs with a method to automatically
adapt to user requirements while de-coupling the static
security-critical parts of the design.

3) Enabling a cold-boot time for new FPGA instances below
7 seconds.

4) Provide APIs to integrate disaggregated FPGAs into an
existing cloud software stack.

Overall, we aim i) to increase the scalability and efficiency
of FPGA offerings in the cloud and ii) to reduce the platform
adaption work for FPGA developers. Within the scope of this
work, we focus on providing cloud FPGAs with an FaaS
offering, but do not address the design or compilation of such
FPGA-embedded functions.

The remaining of this paper is structured as follows: Next,
we introduce an illustrative example application and give
a brief overview of FPGAs in the cloud and their design
flow, before we discuss current disadvantages. Afterwards, we
propose the Mantle architecture design pattern to overcome
the formerly elaborated shortcomings and present its imple-
mentation for FPGAs and cloud management stacks. Finally,
we evaluate our framework in depth using real hardware and a
commercial cloud, before we discuss related work and provide
a conclusion.

III. ILLUSTRATIVE EXAMPLE
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Fig. 2. Illustrative example: Image denoising using
FPGA-based FaaS.

Figure 2 shows
one illustrative
use case for
FPGA-based
FaaS: The user
wants to (pre-)
process images
with denoising
filters. Therefore
(s)he posts a
request containing
the image to
the respective
service URL
pointing to an
FaaS framework frontend, i.e. the eventing component of
such a framework. Subsequently, this component validates
the request and realizes that the corresponding service had
scaled to zero before and is therefore asking the serving
component to provision an instance of this service. Hence,
the framework invokes an FPGA instance, e.g. a closely-
coupled or disaggregated FPGA. Afterwards, the data of this
request is send to the new FPGA instance, together with an
identifying job-id using queues. Next, the FPGA processes
the workload. In the case of closely-coupled FPGAs, the
data must pass through the CPU and it’s network stacks or
run-time environments before reaching the FPGA. When the
FPGA is done, it sends the result and it’s job-id to the FaaS
framework. Finally, the result is forwarded to the user and,
depending on the current load and the service configuration,
the FPGA instance could be powered-off again.

For this type of workload — image filtering — we would
expect a speedup between 5 and 20 and energy savings of 60
– 80% due to the use of disaggregated FPGAs [35]. Some
of the speedup can be accounted to the fast checking and
routing of network packets in the FPGA logic. For example,
the disaggregated FPGA platform used for our experiments
in Section VII can validate and route a UDP packet in less
than 0.1 µs to the corresponding kernel. Similarly, a TCP
connection can be processed in less than 0.6 µs [31].

IV. FPGAS IN CLOUDS AND HOW TO USE THEM

The major types of today’s cloud FPGA offerings were
introduced in the previous sections and summarized in Figure
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Fig. 3. Overview of the typical design flow for FPGAs in the cloud. The place and route phase tries to optimize the location of each operation and their
connections while the logical, physical and timing constraints of the design must be satisfied. In general, place and route is shown to be NP-complete [36].

1. However, FPGAs in the cloud usually have some design
patterns in common, due to the similar constraints in such
platforms. We will illustrate this general design pattern in
Section IV-C and why it must be adapted to the requirements
of disaggregated FPGAs in Section IV-D. But first, we will
give a short introduction of the general FPGA design flow and
explain how these FPGAs are configured in a cloud setting.

A. Cloud FPGA Design Flow for Container Designers

An overview of the different steps of the FPGA design
Flow is given in Figure 3. Based on the initial motivation
and concept of an FPGA application, the application kernel
is developed using some kind of high-level languages. Those
“high-level” languages can range from C/C++-like (e.g. [37],
[38]) to Haskell-based tools (e.g. [39]). Next, this High-Level
Language is compiled to a Hardware-Description Language
(HDL), typically VHDL or Verilog. Alternatively, the appli-
cation can be coded directly in HDL. The abstraction level of
HDLs can be compared to Assembler languages for CPUs and
HDL descriptions can be vendor-agnostic, in general. Next,
the developer must decide which device and cloud vendor
(s)he targets, because the next steps are mostly device- and/or
vendor-specific. At this step, the chosen deployment approach
of the FPGA must also be considered. How the platform
specific logic of the FPGA interacts with the application
specific part is explained in the Sections IV-C and IV-D.

Let’s compare the showed flow in Figure 3 with the devel-
opment of cloud containers to highlight the differences that
are important for this work. The two major changes between
the classical closely-coupled approach, depicted in the last row
in Figure 3, and the enabled shorter flow in the upper branch
of Figure 3, are the possible adaption of the platform with
respect to the FPGA app — not vice versa as classical — and
the independence of a VM at run time.

In the classical case, adapting an FPGA app to the vendor
can be a lengthy process and can be compared to writing a
complete new Dockerfile for a complex application on a
new CPU architecture, starting from a very tiny base image.
In opposition to that, using our novel flow, the user decides
which app interface and dependencies her/his app requires
based on the interfaces the provider offers and informs the

provider about the requirement upon deployment. This step
can be compared to deciding on which prepared parent image
the application builds its Dockerfile [40]. Consequently, the
developer can deploy the app faster on the cloud service and
is furthermore not vendor and/or device bound.

To not exceed the scope of this paper, we refer the reader
to standard references like [41] for more details on the FPGA
design flow.

B. Commanding the Fleet: Configuration of FPGAs

To “tell” an FPGA what it should do, a device-specific
binary must be loaded into the device, as shown in Figure 3.
This step is usually called the configuration of FPGAs and the
FPGA specific binary is commonly referred to as bitstream.
In our illustrative example of Figure 2, the developer adds
the bitstream of the image denoise application to the serving
component of the FaaS framework and offers the service to
users who may be clueless about FPGAs but just want to
leverage their acceleration capabilities. Consequently, if the
corresponding bitstream is configured, the FPGAs “know”
what they have to do if invoked by the framework.

An additional feature of FPGAs is partial reconfiguration.
When using partial reconfiguration, parts of the FPGA design
are updated or exchanged, while the remaining part of the
FPGA continues to operate [42]. For example, in Figure 4,
the upper part can be exchanged during run time without
interrupting the lower part. Partial reconfiguration offer various
merits, e.g. a very short adaption time or additional security
guarantees [32], [42].

Despite the differences in architecture and density, closely-
coupled and disaggregated FPGAs differ also in booting and
configuration. Disaggregated or “standalone” FPGAs run com-
pletely on their own without being controlled or configured by
an attached CPU. This means that they require a boot-medium
to load the deployed bitstream, or at least the initial version of
it. This bitstream must then contain the logic that allows the
FPGA to operate in its environment. Non-standalone FPGAs
are tightly coupled with a CPU, usually via a bus interface
like PCIe. Therefore, the CPU can control the FPGA during
run time, provide the bitstream configuration at initialization,
or the necessary updates during run time. However, an idle



CPU dissipates more energy than an FPGA under full load, so
standalone FPGAs have advantages when it comes to energy
efficiency (see e.g. [35]). On the other side, in the absence
of a controlling CPU, it is the responsibility of the standalone
FPGA itself to handle the updates of the logic during run time,
if changing environment conditions demand so.

Hence, standalone FPGAs may offer an advantage in terms
of energy efficiency, size or flexibility. This comes with poten-
tial disadvantages due to a more complex control logic within
the FPGA design and more dependencies for applications.
Should the advantages of disaggregated FPGAs be leveraged
by a cloud service, this complex control logic for standalone
FPGAs is a key requirement. Consequently, the next sections
explain how to fulfill this requirement.

C. The Shell Role Architecture Design Pattern

To make an FPGA platform usable for various applications,
its design is often split into a platform specific and an
application specific part. We will refer to this pattern as Shell
Role architecture and one example is depicted in Figure 4.
The platform specific part — i.e. the Shell — contains all I/O
processing, the PCIe or network cores, the memory access and
some run time management. The application specific part —
the Role — contains the user’s application on this platform.
The Shell and the Role are linked via the Shell Role interface.
This interface is at “wire level” in the FPGA chip.
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Fig. 4. The general principle of a Shell Role
architecture and the corresponding interface.

The Shell Role
architecture
principle
has several
advantages: On
one hand, it allows
platform vendors
to develop
their platform
for various
applications. On
the other hand,
the application
developer does
not need to deal
with the I/O details of a given platform and can rely on
the abstractions that are provided by the vendor. This idea
also follows established design patterns like Separation of
Concerns or Single responsibility principle. Additionally, if
the Shell Role interface is clearly defined it also allows the
usage of partial reconfiguration. Ideally, when using partial
reconfiguration, the user does not need to share her/his source
code with the platform vendor, (s)he is only required to share
the binary partial bitfile. Furthermore, the platform vendor
can control the Shell at deployment and during run time and
can consequently enforce all necessary security measures
[32]. Due to these advantages, the Shell Role architecture
design pattern — with and without partial reconfiguration —
can be widely observed [18], [29], [32], [33], [35], [43].

Using our example of Figure 2, the denoising algorithm
would be part of the Role and would consume the payloads
from the network interface of the Shell. The lower-level
network control including the job routing is handled entirely
by the Shell.

D. Limitations of Shell Role Architecture Design Patterns

Despite their widespread dissemination, Shell Role archi-
tectures create a multitude of problems for FPGAs in the
cloud. The seamless interaction between Shell and Role only
works (and compiles) if both are using the same Shell Role
interface. This leads to a strong dependency of the complete
ecosystem around a platform on this Shell Role interface
and consequently “freezes” the interface once it is released
and deployed. After the release, application developers design
their app using this interface and consequently expect that the
platform will continue to offer this version of the Shell Role
interface in the future. Therefore, if the platform vendor wants
to improve the interface, e.g. with a faster memory connection,
a new encryption capability or the next version of a third-party
core, the vendor has to maintain the old and the new version
of the Shell to not disrupt the users of the platform. This is
the case for designs without and with partial reconfiguration.
In the latter case, the constraint is even stronger, because the
Shell Role interface needs to stay the same all the way down
to the level of the physical partition pins in the FPGA.

On the other hand, the increasing usage of third-party de-
pendencies, like e.g. Xilinx’s Vitis library, [44] the OpenCores
project [45], or different usable communications models like
MPI [35] or OpenCL [46], weakens the clean separation
between Shell and Role, because if an app relies on run-
time environment or library support from the platform vendor,
the Role is no longer the single responsibility of the user. In
addition, the Shell is then no longer application independent.
This mixture would lead to a large number of different
Shell Role interfaces, if following the classical Shell Role
architecture approach.

Hence, if the platform vendor wants to offer multiple run-
time environments, i.e. different versions of the Shell, for
his/her FPGAs, a large number of Shells must be kept available
for the user. In addition, the new Shell must be distributed
either to the developer or to the building component, in the
case of no partial reconfiguration, or to the deployed systems
in the case of partial reconfiguration.

This also impacts the provision time: FPGAs have a mem-
ory to boot from when they are powered on, which comes
with some consequences. First, no matter how big this boot-
memory is, the right Shell has to be selected or written
to the memory before the FPGA is operational. In case of
disaggregated FPGAs, this undermines the advantages of the
independence. Second, at some point the number of available
Shells becomes limited by the size of the available boot
memory of FPGAs, standalone or not. Therefore, providing a
significant number of different Shells would require frequent
rebooting of the FPGAs to meet the specific Shells demanded
by different workloads. Besides the huge management effort,



this reduces the efficiency of the system by diminishing the
up-time. In addition, no guarantees for execution times could
be given for such a system.

As a consequence, the usage of Shell Role architectures
limits the scalability and portability of FPGAs in the cloud.
Furthermore, the simplifying motivation behind the Separation
of Concerns principle would lead to a much more complex de-
pendency management effort — the opposite of the intention.

V. MANTLE ARCHITECTURE TO THE RESCUE – OR HOW TO
BUILD EFFICIENT AND SECURE CLOUD FPGA PLATFORMS

Our goal is to bring the flexibility found in container- and
package-based classical CPU platforms to FPGAs in the cloud,
while at the same time simplifying the deployment process for
the cloud vendor. Therefore, we introduce the Mantle FPGA
design architecture in the following. Afterwards, we describe
the cloud stack integration.

A. FPGA Design Pattern

The main ambition of the Shell Role architecture is to
simplify the platform and the development of applications for
it. This ambition is undermined by the strong dependency
of the interface on the platform logic (Shell) and the app
logic (Role). To resolve this, we propose to add a logical
layer in between the Shell and the Role: The Mantle, which
acts as glue between the static platform logic and a user’s
application. In the software world, this notion is sometimes
called Middleware.

While the Mantle sits in between the physical Shell and
Role components, its logical function is actually part of both.
Therefore, we will refer to the Shell+Mantle part as (dynamic
and static) platform logic and the application specific part
of the Role as app logic, as depicted in Figure 5. In order
to separate the design specific part of the platform — e.g.,
memory management, encryption engines or data conversion
cores — from the design independent part — e.g., physical
layer communication, I/O processing, or physical memory —
we split the platform logic into a static and dynamic part.
From a logical point of view, the design is still split into Shell,
the platform specific part, and Role, the application specific
part. Technically, the app logic is the part of the Role that
comes from the user. The static platform logic is the part of
the platform that is independent of application and use case.
The dynamic platform logic contains the Intellectual Property
(IP) cores that are application or use case specific and for
which the platform vendor is responsible. Hence, the dynamic
platform logic — or Mantle — has parts that belong to the
logical Shell and the logical Role.

The presence of a Mantle repeats the engineering motion
behind the original Shell Role architecture. It divides respon-
sibilities by defining clear interfaces, but with a different
interface to the platform and to the application. It consequently
acts as an adapter between platform logic and app logic.
Hence, the platform vendor can update the platform logic if
necessary and then adapt to different requirements of the app
logic by issuing a new version of the dynamic platform logic.
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The opposite is possible too: If the application needs more
features provided by the platform, the Mantle can be adapted
without the necessity to replace all static platform logics in
the deployed system. If the Mantle can also be deployed by
partial reconfiguration, the FPGA can continue to run while
adapting the platform to the needs of a user. As a consequence,
the FPGA platform can now offer backward and forward
compatibility, which are necessary features for user friendly
and scalable FPGA platforms in the cloud. Furthermore, due to
the split of platform and application logic, the platform vendor
retains control of the platform control path. If combined
with partial reconfiguration, this guaranteed control also holds
during run time, because the deployed binaries of the platform
logic are not “touched” or manipulated by the user.

Nonetheless, just adding another partial reconfiguration re-
gion is not sufficient, because the IP cores and their control
path within the Mantle can still vary significantly. Moreover,
it needs to be possible that the control path of the dynamic
platform logic can be updated without changing an already
deployed and running static platform logic. This requirement
is fulfilled best when using a standardized bus between the
static platform logic and Mantle, with endpoints on both sides
that can handle the communication and necessary actions.
Hence, we introduce a Management Companion Core (MMC)
to the Mantle that is connected to the control path of the
static platform logic — or FPGA Management Core (FMC)
— via a standard AXI4 Lite bus [47], as depicted in Figure
5. We decided to use the Lite version of AXI4 because most
communications in this context are single register reads and
writes without a need for burst transfers. We will refer to this
composable design pattern as Mantle architecture. With this
approach, we can update the Mantle, also by using partial
reconfiguration, and the interface between static platform logic
and Mantle remains static even if there are new cores added to
the Mantle. Consequently, static and dynamic platform logics
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can be developed and deployed independently of each other.
However, the FMC inside the static platform logic still needs

to know how to handle all versions of the dynamic platform
logic. To avoid the need for future knowledge inside the FMC,
the dynamic platform logic needs to contain all necessary
information for the FMC, so that the FMC knows how to
manage the Mantle. Therefore, the MCC provides a header
table that can be read via the AXI4 Lite bus. Since the structure
of the table can be designed in a way that is independent of
its content, the FMC can still handle all versions of Mantles,
including new versions that are designed after the deployment
of the static platform logic.

The concept of adding a layer between the platform specific
part of the design and the application specific part follows
classical software design patterns, like the emergence of
containers or the dynamic code linking, e.g., of the glibc
[48]. The GNU C library maintains different versions of its
Application Binary Interface (ABI) to stay compatible with old
applications and to serve as a link between applications and
the Linux§ kernel. Similar mechanisms are present in mod-
ern cloud computing frameworks like Docker or Kubernetes.
Those frameworks also allow version mismatches within a
certain range [49]. Since our proposed Mantle concept also
allows this kinds of forward and backward compatibility, it
can be seen as a container stack or glibc for FPGAs. These
properties can support a large scale of different third-party
dependencies on the same cloud FPGA.

B. Cloud Stack Integration

The changed micro-architecture of the FPGA must be re-
flected in the data center architecture as well. In general, there
exist two approaches to incorporate disaggregated FPGAs into
a data center management environment: Either, to treat the
FPGA as part of the infrastructure and not expose it to a user
as available resource [29], or to expose the FPGA node as
resource in the same way as CPU resources are handled, e.g.
in combination with a cloud stack framework like OpenStack
[32], [33]. Consequently, to realize an FaaS offering that
leverages explicit acceleration, we decided to build on top of
the second approach.

Disaggregated FPGAs have three levels of management
dependencies [32], as depicted by the green numbers in
Figure 6: First, controlling what is happening inside the FPGA.
The details of this level are handled by the Mantle micro-
architecture with its FMC and MCC, as previously discussed.
Second, controlling the power state and initial setup of the
FPGA, or a group of FPGAs. Third, managing and assigning
FPGAs to users or functions at data center level.

While the Mantle architecture does not require changes on
the second level, the third level must reflect the split between
dynamic and static platform logic within the FPGA. Therefore,
the FPGA resource manager tracks and stores which dynamic
platform and app logic are configured on each device. In
addition, to audit the status of the FPGAs, a HTTP GET
/status request can be used, as e.g. described in [32],
using REpresentational State Transfer (REST) concepts. With
this approach, the resource manager can quickly determine
if there are FPGAs with the right dynamic platform logic
available when a request from the FaaS frontend arrives. In
case a suitable FPGA resource exists, only the app logic
must be updated by a partial reconfiguration. Otherwise, the
dynamic platform logic must be changed first, also by using
partial reconfiguration. Consequently, the execution efficiency
is increased, because deployed logic can be reused.

VI. IMPLEMENTATION

A. FPGA Design

To leverage the full advantages of the composable Mantle
architecture, the control path inside the static platform logic is
designed in a way that makes it forward compatible. That way,
once deployed and running, it can be updated at run time to
handle a new version of a dynamic platform logic. To control
the Mantle, the run time management needs to know which
IP cores are in the Mantle region and what information these
cores need at run time and how to deliver this information.
When using the general interface shown in Figure 5, the
information from the static control path — the FMC — must
be forwarded via the MCC to the dynamic part.

To retrieve the necessary information at run time itself,
the FMC implements a RESTful API frontend. This fron-
tend is used to submit commands and configurations to the
FPGA at run time. The FMC needs to parse and process
the API requests and forward the resulting information via
the control path to the IP cores. The FMC of our compos-
able Mantle architecture can parse, process and respond to
HTTP API requests, such as POST /routing HTTP/1.1
\r\n(payload)\r\n.

Since the processing steps for multiple API requests are
similar, we implemented small functional cores that can be
used by different calls. In order to increase reusability even
further, we implemented the request processing with a tiny
Instruction Set Architecture (ISA). The structure of the ISA is
depicted on the left hand side of Figure 7 and is described in
the following. A global Finite State Machine (FSM) evaluates
the incoming signals and distinguishes between situations like
a new API command arrival, another data junk of partly
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processed API command arrival, or detects the state changes of
other peripherals. Then, the FSM issues instructions according
to this global situation based on a static code library. Subse-
quently, these instructions are executed by the ISA execution
loop. The valid API paths are stored in a table. Examples
would be different RESTful HTTP paths like GET /status,
POST /mantle, or PUT /reset. This table also contains
the start addresses of the static code library for processing the
request. Therefore, the ISA instructions are independent of the
API calls. The instructions parse the request and then map the
request to the content of the HTTP API paths table. If the API
call is not part of the table, the FMC can immediately respond
with the corresponding error codes.

In addition to the reusability of logic blocks, implementing
the management core inside the FPGA by using a special ISA
enables the dynamic extension of the code and architecture at
run time. Hence, the MCC can implement a table that contains
the dynamic extensions of the API request paths table and the
code library, as depicted on the right hand side of Figure 7.
The FMC can copy these tables via the AXI4 Lite bus every
time when a new Mantle is partially configured. Therefore, the
FMC “learns” how to handle new API calls for this specific
Mantle. Since the sizes of the API paths and code tables vary
between different Mantles, the configuration table of the MCC
needs a header that declares the positions of the dynamic
contents within the AXI4 register space. Furthermore, each
API path and the corresponding code snippet also varies in
length and may not always be a multiple of the AXI bus
width. Therefore, an additional table providing the indexes
of the begin of each API call and each corresponding code
snippet within the data is required. One example of such an
header table is given in Table I.

This header table can be seen as the equivalent of the
header tables in the Executable and Linkable Format (ELF)
[50]. Since the version number is always on address 0 of the
AXI4 Lite address space, the FMC can also be developed in a
way that supports multiple MCC header versions. Different
IP cores in different Mantles may require completely new
instructions to be introduced to the FMC. The most flexible
way of updating the ISA architecture is to allow the execution
of special instructions in the MCC as well, as a kind of an

mantle-specific co-processor. Therefore, the FMC can forward
instruction opcodes and parameters to the MCC via the AXI4
Lite bus. The number of parameters and the register addresses
is different for each Mantle and therefore also provided by the
header table of the MCC. Finally, the dynamic code library
contains the instruction opcodes that have to be forwarded to
the MCC in order to process a given API request. The dynamic
code library can also enclose code to adapt the parameters of
these instructions.

This implementation of the dynamic extensions does
not modify the FMC itself at all and consequently can
be changed every time a new Mantle is configured.

TABLE I
STRUCTURE OF THE MCC HEADER TABLE

Word
position Data (32-bit)

0 Header structure version
1 Pointer to Mantle version string
2 Length of Mantle version string
3 Number of additional API calls
4 Pointer to API call string index table
5 Pointer to API call strings
6 Pointer to API call code index table
7 Pointer to API call code table
8 Pointer to MCC configuration space
9 Pointer to MCC status registers

10 Pointer to status space
11 Pointer to initialization code
12 Length of initialization code
13 Address of the MCC instruction register
14 Maximum parameters per MCC instruction
15 content based on pointers
... ....

One detailed example
using the composable
Mantle architecture
design pattern,
including an interface
for Vitis Vision
kernels [51], memory
address translations
and symmetric
encryption, is
depicted in Figure
8. This example
would be one specific
implementation for
an image filtering service, e.g. denoising, as illustrated in
Figure 2. In this example, the control path must be extended
to adapt the memory layout, the encryption core and network
configurations of the Vitis2Network adapter. Finally, the
start and stop of the application must be controlled.

B. Cloud Stack Integration and Deployment

Through leveraging the composable Mantle architecture
design concept, the user can develop her/his application using
an app logic interface (s)he likes and choose the appropriate
Mantle at run time. Consequently, the user must inform the
cloud service about the requirements of the implemented app
logic and does not need to adapt to the specific requirements of
one vendor. Therefore, the user submits the synthesized, placed
and routed partial bitstream along with the description of the
required Mantle to the cloud FPGA platform. The platform
management framework then knows which dynamic platform
logic must be configured for this particular app. As an example
to illustrate this, Listing 1 shows the requirement description
for the implementation of Figure 8 in JSON syntax. In this
example, the application specific interface for Vitis Vision is
selected and the platform is asked to provide the necessary
“network adapter”. Upon upload of this description along with
the corresponding partial bitfile by the user, the cloud FaaS
service can infer which dynamic platform logic is required.
Furthermore, in this example, the cloud provider decided to
use a symmetric encryption for the network traffic in the data
center, as depicted in the Mantle in Figure 8. This core is
controlled by the provider and its presence or absence does not
affect the user application or the specified interface. Finally,
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{
"name": "iamge_denoise-jacobi",
"version": "0.9.42",
"interface": {
"app_vitis_vision" : "1.1.0"

},
"dependencies": {
"VitisVision2Network" : "~1.2.0"

}
}

Listing 1. FPGA in cloud application requirement JSON description for the
FPGA design in Figure 8 using the composable Mantle architecture.

after deciding which Mantle should be used, either an existing
FPGA that fulfills the requirements is selected or a new one
is powered-on and configured accordingly.

VII. EVALUATION

A. Experimental Setup

To evaluate our proposed system architecture and design
flow, we compare two FPGA-based systems and one CPU-
based system, similarly to the setup of the example in Figure
2: First, we evaluate the Mantle architecture on the IBM**

cloudFPGA (cF) platform [30], a disaggregated FPGA system
which management framework includes RESTful HTTP APIs
[32]. The cF system architecture is depicted in Figure 6 and it
consists of standalone Xilinx KU60 FPGAs1, grouped by 32
in so called “Sleds”. Each FPGA boots from a flash chip that
can contain only one Shell (or static platform logic).

Second, to compare our proposed architecture with com-
mercial available technologies, we also tested the possibilities
using one AWS Elastic Compute Cloud (EC2) F1 instance
[18]. An F1 instance is a CPU-FPGA heterogeneous platform
where Xilinx VU9P FPGA2 devices are tightly attached to

1xcku060-ffva1156-2-i
2xcvu9p-flgb2104-2-i

TABLE II
CONFIGURATION TIMES

operation file size total time effective speed
in MiB in seconds in kiB

s
JTAG config. of the compl. design 24.5 55.09 455.39
JTAG partial reconfig. of Mantle 1.8 11.07 166.43
JTAG partial reconfig. of app logic 12.8 30.85 424.82
POST /configure of partial
Mantle logic via TCP 1.8 0.17 10,788.41

POST /configure of partial
app logic via TCP 12.8 1.07 12,215.09

TABLE III
FPGA DESIGN BUILD TIMES

build of time
in minutes

complete design 168
app logic + Mantle 37
app logic 32

TABLE IV
PROVISIONING TIMES

cold boot of time
in seconds

CPU 271.10
AWS EC2 F1 82.26
cloudFPGA (cF) 6.20

Intel Xeon E5-2686 v4 (Broadwell) CPUs through a high-
bandwidth PCIe x16 interface. For our testbed we used the
f1.2xlarge type of EC2, featuring a single FPGA, one
virtual CPU with 8 cores and 122GB of memory.

Lastly, to compare with CPUs, we used one bare-metal
server containing two Intel Xeon E5-2630 v3 @ 2.4GHz CPU
with 8 cores each and 126GB memory running Ubuntu 20.04.

In the remainder of this section, we evaluate the main goals
of the proposed Mantle architecture: The improvement of the
building (see VII-B) and provisioning times (VII-C & VII-E),
including cold-boot, of FPGA nodes without significant re-
source (VII-D) or latency overheads (VII-F). Consequently,
we did not evaluate the deployment of the FaaS framework.
Neither did we evaluate specific applications, e.g. image
filtering or denoising as used in the illustrative example of
Figure 2, to not exceed the scope of this work. Because a fair
comparison of applications on different hardware platforms
would require an in depth analysis of the resulting performance
and would be biased by the used or not-used optimizations of
each workload on each platform, which is not the focus of
this paper. Nevertheless, we provide an application agnostic
analysis of the performance impact of our architecture in
Section VII-F using a roofline model.

B. Evaluation of Configuration and Build Times

Table II shows the configuration times of the different
components of the design using the bus standard Joint Test
Action Group (JTAG) or TCP/IP protocol via the network.
As expected, deploying Mantle and app logic separately using
partial reconfiguration, while using the static platform logic
that is present after boot, leads to shorter configuration times,
which also reduces the down-time or the switching costs of a
service. The JTAG speed for the experiments in Table II was
set to 5 Mbit

s , the TCP is based on a 10Gb/s Ethernet. This
experiment highlights the advantage of the proposed approach
with disaggregated network-attached FPGAs, because using an
FPGA-based TCP stack to configure bitstreams outperforms
the usual JTAG procedure.

Additionally, if the user only needs to build her/his FPGA
application without the static platform logic or the third-party
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Fig. 9. Model of the impact of provisioning times on the gap between
demanded and running instances for a dynamic, random request profile.

modules, the build time for the user is reduced as well, as
shown in Table III. These builds were measured on an Intel
Core i7-6700K CPU @ 4.00GHz running RHEL 7.5 and
always include synthesis, place, route, and generation of the
(partial) bitstreams.

C. Evaluation of Provisioning Time

After building and configuration, we evaluated the pro-
visioning time of new instances. Our experiments assume
that the FaaS frontend states what the current number of
instances should be and their corresponding configuration (as
it would be, e.g., with Kubernetes/Knative). Therefore, we
measured the time of a cold boot until the FPGA or CPU
application began to execute. The averaged result of all three
platforms are shown in Table IV. As can be seen, the cF
platform using the Mantle architecture is up and running more
than 40 times faster than the CPU server and more than 10
faster than the AWS F1 instance. For AWS, we could not
request FPGAs attached to bare-metal servers. Consequently,
the measured results in Table IV are not completely fair
(to our disadvantage), since we compare a bare-metal CPU
with a VM and a bare-metal FPGA. However, we think the
comparison is “fair enough” to exhibit the impact of our
proposed architecture, in combination with disaggregation, on
the provision time of FPGA instances.

Based on these results, we modeled the behavior of a large
FaaS offering that has a dynamic request load in Figure 9.
In this model, one instance can handle up to 10 requests in
parallel and the autoscaler targets a utilization of 90%. The
result exhibits the advantage of the faster response time of
our composable and disaggregated Mantle architecture. By
contrast, the “classical” FPGA with a closely-coupled CPU
for the platform management, instead of the proposed static
platform logic withing the FPGA, can not scale as fast or meet
the requirements, as represented by the AWS F1 experiment.
This is also emphasized by the results in Section VII-E.

D. Evaluation of Resource Overhead

Third, we wanted to evaluate the overhead of the com-
posable Mantle architecture concept in terms of FPGA re-
sources. The results for the FMC and MCC with an example
design similar to the one in Figure 8 are shown in Table V.
The resource usage of the composable Mantle architecture

TABLE V
RESOURCE USAGE IN A XCKU060

Resource Available Used
FMC MCC

LUT 331680 14711 (4.44%) 523 (0.16%)
LUTRAM 146880 162 (0.11%) 0 (0.00%)
FF 663360 14314 (2.16%) 332 (0.05%)
BRAM 1080 15 (1.39%) 6 (0.56%)
DSP 2760 12 (0.43%) 0 (0.00%)

management framework is below five percent of all available
resources. This very limited overhead supports the idea of
offering user-friendly dynamic Mantle extensions.

E. Evaluation of Switching Time

Fourth, to come back to our goal of increasing execution
efficiency of the FaaS platform, we also evaluated the switch-
ing time of multiple workloads under resource constrains.
In particular, we measured the total time to execute three
different apps with only one FPGA or CPU. In the case of
the FPGA with Mantle architecture, two apps have the same
app interface. To avoid confusing application-agnostic boot
and switching times with application-specific acceleration, we
replaced the real execution times for all platforms with the
same placeholders (10, 25, and 45 seconds). The results are
given in Figure 10. Our Mantle architecture finishes executing
all apps when the closely-coupled FPGA starts the first app and
while the CPU is still booting. In addition, the time actually
spent on execution is close to 90% for our architecture. This
result underlines the general advantage of stand-alone FPGAs.

F. Evaluation of Performance Penalty

Finally, we calculated the potential performance penalty
for the cF FPGAs using the Mantle architecture. We wanted
to ensure that we do not achieve significant efficiency gains
for execution and deployment at the cost of decreased per-
formance, because this could render the acceleration useless.
To avoid the bias of a few selected applications, we decided
to calculate the roofline model [52] of the cF platform in-
stead, which is given in Figure 11 and is adjusted for the
clock frequency of 156 MHz, as used by the cF platform.
In this figure, the attainable performance of one cF FPGA
before and after the introduction of the Mantle architecture is
shown. The roofline indicates that the theoretically attainable
performance for relevant kernel domains [53], [54] is affected
only minimally by the introduction of the Mantle architecture.
For example, the image denoising of Figure 2 would have an
operational intensity around one. As a methodological remark:
Calculating the peak performance for FPGAs is always very
application specific, since the application defines the micro-
architecture and therefore the operations. However, summing
the performances of the available Digital Signal Processors
(DSPs) of an FPGA is a good upper estimate. In addition,
the usable share of the bandwidth provided by LUTRAM and
BRAM also depends on the application-specific FPGA design.
For this analysis, we assumed (over-optimistic) that all those
building blocks would be used in the theoretically maximal
performative way. Consequently, the impact on realistic FaaS
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functions is even smaller, since we expect those workloads to
be dominated by the 10 GbE network traffic and not by, for
example, the reduced BRAM bandwidth of 429 GB/s.

VIII. RELATED WORK

Two recent research activities focuses on decoupling app
and platform logic within the FPGA (cf. right-hand side of
Figure 1): First, in 2015, Kirchgessner et al. proposed a project
named “RC Middleware” to increase the productivity of FPGA
application developers by providing application independent
wrappers and compiler-like tool chains [55], [56]. However,
their approach is completely static and does not consider
partial reconfiguration, a separate control path, or forward
compatibility. A second middleware layer for network-attached
FPGAs was proposed by Tarafdar et al. in 2019 to pro-
vide run-time specific communication functionality [33], [57].
Their middleware can also be used to hide the actual physical
nodes behind logical kernels by providing a common address
space. Eventually, the authors do not consider different run-
time environments or middlewares executed at the same time
on an FPGA platform. Also, their middleware is a static part
of the platform and cannot be updated during run time.

Beyond related research within the FPGA and our own
work, there are complementary efforts to establish FPGAs in
cloud environments by improving the resource management
of closely-coupled FPGAs for monolithic FPGA designs [43],

[58]–[61]. For example, InAccel’s FPGA management frame-
work enables the usage of bus-attached FPGAs with Kubeless
applications, by providing the necessary resource detection,
FPGA configuration and deployment functionalities [17], [62].
These efforts are valuable to increase the availability of FPGAs
to VMs or containers and to enhance the flexibility of cloud
FPGA deployments, but target different hardware platforms
and deployment models (i.e. IaaS/PaaS such as the left-hand
side of Figure 1) than this work. Nonetheless, we expect these
frameworks could gain further efficiency and flexibility if they
were to adopt the Mantle architecture.

IX. CONCLUSION

To saturate the world’s ever increasing need for energy- and
cost-efficient compute power, data center providers rely on
acceleration more and more. FPGAs offer energy-efficiency
and the flexibility to adopt to a broad range of accelerated
applications but lack integration with modern cloud offerings
like Function-as-a-Service. Deploying them as standalone,
disaggregated compute nodes enables a seamless integration
with scalable cloud services. Furthermore, the proposed dy-
namic three-layer architecture offers forward and backward
compatibility while simplifying the design and deployment
environment for FPGA-based Function-as-a-Service offerings.
The evaluation of this proposed architecture design pattern
— the Mantle architecture — shows an increase of the
execution efficiency by factors of 2.9 – 4.1 to approximately
90%, even if the FPGA is used for just 80 seconds. Addi-
tionally, using partial reconfiguration and the self-management
capability of the proposed FPGA management cores, the cold-
boot and provisioning time of new FPGA instances is reduced
by factors of 13.2 – 43.7 to below 7 seconds. We hope that our
research highlights the promise of disaggregated FPGAs for
cloud offerings and helps FPGA-based Function-as-a-Service
offerings becoming a reality.
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