
Accepted for FCCM 2020

ZRLMPI: A Unified Programming Model for
Reconfigurable Heterogeneous Computing Clusters

Burkhard Ringlein∗† , Francois Abel† , Alexander Ditter∗ , Beat Weiss† , Christoph Hagleitner† , and Dietmar Fey∗
†IBM Research Europe, ∗Friedrich-Alexander University Erlangen-Nürnberg

{ngl, fab, wei, hle}@zurich.ibm.com, {burkhard.ringlein, alexander.ditter, dietmar.fey}@fau.de

Abstract—Over the past two decades, the Message Passing
Interface (MPI) has evolved as the de-facto standard for pro-
gramming High-Performance Computing (HPC) clusters. Its
widespread utilization led to the rapid development of appli-
cations and high reusability. Meanwhile, energy- and compute-
efficient devices such as Field-Programmable Gate Arrays (FP-
GAs) are stepping into modern data centers and HPC clusters
to address the nearing end of technology scaling. This combi-
nation of traditional CPU servers and FPGA nodes leads to
Reconfigurable Heterogeneous HPC (ReH2PC) systems that are
particularly cumbersome to program because of the absence of
a standard programming model. This work advocates the use of
MPI to program such ReH2PC clusters and presents a proof of
concept based on a cross-compiler, a High-Level Synthesis library,
a C++ library, an FPGA- and a CPU-runtime environment. The
result is a one-click solution, which compiles a standard MPI
application for a ReH2PC cluster.

I. PROGRAMMING REH2PC CLUSTERS

Today’s High-Performance Computing (HPC) systems can
be classified into three classes. The first and traditional HPC
class solely consists of CPU servers, while the second class,
typically referred to as Reconfigurable HPC (ReHPC), is
only comprised of Field-Programmable Gate Arrays (FPGAs)
nodes. The third class is named Reconfigurable Heteroge-
neous HPC (ReH2PC) because it comprises a mixture of
the CPU servers from the first class and the FPGA nodes
from the second class. Unfortunately, despite many attempts,
no standard has yet emerged for the programming of such
heterogeneous clusters. This absence of agreement hinders the
rapid development of applications using FPGAs in HPC, and
motivated us to reconsider the use of the Message Passing
Interface (MPI) for ReH2PC platforms. MPI is widely adopted
in the HPC community and we want to demonstrate that, with
its standardized syntax and semantics, it also fits as a single
programming model for ReH2PC clusters. To avoid re-coding
every application for every specific heterogeneous cluster, we
propose a High-Level Synthesis (HLS) approach, where the
application code (for e.g. C/C++) is turned into a hardware
design description at some point in the compilation flow. An
HLS design is typically coded as a set of processes inter-
connected with object-oriented stream constructs (e.g. AXI4
streams). Since MPI already defines the parallel execution and
communication of the node processes, we think that it is a
proper forking point to enter the FPGA HLS synthesis.

Our ambition is to take existing MPI-based applications
that were developed for CPU clusters, and execute them
on a ReH2PC cluster without any code modifications. Our

int msg[1];
int next_node = (rank + 1) % size;
int previous_node = rank -1;
if(rank == 0) {
msg[0] = 0xcaffee;
MPI_Send(&msg[0], 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD);
MPI_Recv(&msg[0], 1, MPI_INTEGER, size-1, 0, MPI_COMM_WORLD, &status);

} else {
MPI_Recv(&msg[0], 1, MPI_INTEGER, previous_node, 0, MPI_COMM_WORLD, &status);
MPI_Send(&msg[0], 1, MPI_INTEGER, next_node, 0, MPI_COMM_WORLD);

}

Listing 1. Snippet of an MPI message ring example. Rank 0 is executed on
the CPU, all other cases on FPGAs. A rank is a unique id per MPI node.

proof of concept uses virtual machines for the CPUs and a
set of network-attached FPGAs managed by the framework
described in [1].

II. ZRLMPI: MPI FOR REH2PC
The goal of ZRLMPI is to bring CPUs and FPGAs to

work together efficiently using a single source of code. As an
example, consider the MPI code of Listing 1, which forwards
a message around a ring of multiple nodes from a sender
(rank 0) back to that same node. In such a programming
approach, the user is not expected to annotate the MPI code
or to use HLS tools her/himself in order to bring the program
to a ReH2PC cluster. This step is automated by our cross-
compiler (ZRLMPIcc) that identifies the parts of the program
that will be executed on FPGAs and transforms these parts
from the original C code to synthesizable HLS code. To iden-
tify these parts, ZRLMPIcc uses a user-defined rankfile
that maps every rank to a specific physical node. This is
analogous to the affinity concept of MPI. To implement the
MPI synchronization and collective routines via the underlying
cluster communication protocol, we developed an HLS core
called Message Passing Engine (MPE). This MPE is
merged with the application HLS code by ZRLMPIcc and is
synthesized to a partial bitstream. In parallel, the CPU specific
parts are also emitted by ZRLMPIcc and compiled together
with the ZRLMPI software runtime library (ZRLMPIlib).
This ZRLMPIlib is the software counterpart of the MPE that
synchronizes CPU and FPGA nodes. To distribute the partial
bitfiles and software binaries as specified by the rankfile,
we’ve developed a deployment framework (ZRLMPIrun)
using the FPGA management runtime of platform [1].

REFERENCES

[1] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey,
“System Architecture for Network-Attached FPGAs in the Cloud using
Partial Reconfiguration,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL), Barcelona, Spain:
IEEE, 2019, pp. 293–300. DOI: 10.1109/FPL.2019.00054.

©2020 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribu-tion to servers or lists, or
reuse of any copyrighted component of this work in other works.
This is the accepted version of the article published by IEEE: DOI 10.1109/FCCM48280.2020.00051

https://orcid.org/0000-0002-7222-9539
https://orcid.org/0000-0002-3295-0292
https://orcid.org/0000-0002-5066-0440
https://orcid.org/0000-0002-4069-1286
https://orcid.org/0000-0002-6815-7835
https://doi.org/10.1109/FPL.2019.00054
https://doi.org/10.1109/FCCM48280.2020.00051

