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Abstract—With the slowdown of Moore’s law and the stop of
Dennard scaling, energy efficiency of compute hardware trans-
lates to compute power. Therefore, High-Performance Computing
(HPC) systems tend to rely more and more on accelerators such
as Field-Programmable Gate Arrays (FPGAs) to fuel high de-
manding workloads, like Big Data applications or Deep Neuronal
Networks. These FPGAs are reconfigurable and sometimes no
longer bus-attached to a CPU but directly connected to the data
center network fabric as standalone nodes. This mix of CPUs and
FPGAs leads to the creation of Reconfigurable Heterogeneous
HPC (ReH2PC) clusters for which no established programming
model exists, despite many proposals in the past.

In contrast to this, the Message Passing Interface (MPI) has
evolved as the de-facto standard to program classical HPC
clusters, due to its high-re-usability and fast development of
applications. This paper revisits the programming model of
ReH2PC clusters and argues that MPI is suitable for program-
ming heterogeneous clusters of FPGAs and CPUs.

We demonstrate a one-click solution for compiling and de-
ploying a standard MPI application on ReH2PC clusters. Our
framework implements a High-Level Synthesis (HLS) library,
a specific run-time environment for FPGAs and CPUs, and a
transpiler that closes the semantic gap between the MPI API
and FPGA designs.

Our experiments with 31 FPGAs show an average speedup of
4 and a 90% reduction of power consumption compared to a
cluster of CPUs.

Index Terms—MPI, network-attached FPGA, stand-alone
FPGA, transpilation, partial reconfiguration, data centers, het-
erogeneous programming model, heterogeneous clusters

I. INTRODUCTION

The end of Dennard scaling and the wind down of Moore’s
law boosted heterogeneous architectures in all areas of com-
puting. Therefore, Data Centers (DCs) have been equipped
with specialized Co-processors, GPUs and more recently,
with Field-Programmable Gate Arrays (FPGAs) to increase
compute power while keeping the energy densities in man-
ageable ranges [1]–[3]. In addition, the demand for High
Performance Computing (HPC) services is increasing further.
Today, the largest supercomputers are heterogeneous (using
GPU acceleration) and there is a lot ongoing research to
integrate reconfigurable devices into Reconfigurable Hetero-
geneous HPC (ReH2PC) systems.

To be of practical use, heterogeneous FPGA+CPU systems
must come with an efficient, flexible and — if possible —
easy programming model to allow users to orchestrate their
algorithms. Hence, there have been multiple approaches to
develop distributed FPGA platforms since the mid 2000s
(among others [4]–[16]). However, none of these platforms

has been widely adopted and today the largest HPC systems
with FPGAs are still limited to a few tens of nodes [16].

This situation is in stark contrast to the classical HPC world,
where one framework has been established as the de-facto
standard: the Message Passing Interface (MPI). The advantage
of settling on one established standard is the acceleration
of research and the development of better applications. In
the classical HPC world, MPI is the foundation for most
simulations, large big data stacks, and even machine learning.

In the meantime, we noticed that FPGAs have started to
become directly attached to the DC network and that some of
them are even starting to operate as standalone nodes [1], [3].
This is a profound change of paradigm in CPU–FPGA and
FPGA–FPGA interactions. It opens new perspectives on the
deployment, scale-out, portability and re-usability of FPGAs
in heterogeneous HPC applications.

These observations motivated us to reconsider the use of
MPI for ReH2PC platforms. The use of MPI could reduce the
semantic gap between HPC applications and reconfigurable
hardware (HW), because software (SW) engineers know how
to use MPI. A common standard would also guarantee the
same behavior of the MPI Application Programming Interface
(API), whether executed on a CPU or an FPGA. Finally,
ReH2PC systems could benefit from the lessons learned during
two decades of MPI evolution and optimization.

On the other hand, not all design paradigms of MPI are also
suitable for ReH2PC. For example, the principle of buffers
— “compute first, send later” — does not fit the inherent
parallel processing capabilities of FPGAs. In the same sense,
the “Single Program, Multiple Data” (SPMD) notion may
lead to wasting of FPGA logic. Hence, in order to use the
standardized MPI language to program FPGA clusters, it must
be trans-compiled, or transpiled.

Besides the points listed above, this work argues for the
use of MPI as programming model for ReH2PC because it
is a perfect starting point for a source-to-source compilation
towards modern High-Level Synthesis (HLS) tools for FPGAs.
Therefore, we contribute a proof of concept MPI implementa-
tion on ReH2PC clusters consisting of a transpiler, FPGA and
SW run-time modules, an HLS synthesizable MPI library and
a program for the automatic deployment and execution of the
application.

The rest of this paper is structured as follows: The next
section revisits the programming of ReH2PC and argues in
detail for the use of MPI. We then discuss related work before
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Fig. 1. HPC vs. ReHPC vs. ReH2PC (based on [17] and [18])

we describe our implementation to realize such a system.
Finally, we evaluate our framework with a 2d-stencil app.

II. PROGRAMMING REH2PC CLUSTERS

Today’s high-performance computing systems can be clas-
sified into three classes as depicted in Figure 1. The first and
traditional HPC class solely consists of CPU nodes, while
the second class, typically referred to as Reconfigurable HPC
(ReHPC), is only composed of FPGA nodes. Such an FPGA
node can either be i) a classical PCIe bus-attached FPGA that
acts as a co-processor slave under the control of a CPU or
ii) a network-attached FPGA with direct access to the cluster
interconnect [2]. The third class comprises a mixture of the
CPU servers from the first class and FPGA nodes from the
second class. Consequently, it is named ReH2PC [18].

Today, the number of heterogeneous clusters is increasing
rapidly as many large-scale parallel applications can benefit
from the incorporation of FPGA hardware accelerators.

Unfortunately, despite many attempts, no standard has yet
emerged for programming such heterogeneous clusters. This
absence of an agreement hinders the rapid development of
applications using FPGAs in HPC. Therefore, a programming
model to enable the development, deployment and manage-
ment of mixed clusters of CPUs and FPGAs is highly desir-
able.

Among the FPGAs used in ReHPC and ReH2PC, network-
attached FPGAs are attractive because they offer a higher
scalability potential compared to classical bus-attached ones
[1] [3]. Such FPGAs directly attach to the cluster interconnect
and can communicate over 10/100Gb links with standard
protocols such as IP/TCP/UDP and Infiniband. Furthermore,
the availability of a direct and standardized communication
path to the FPGA — without going over the PCIe bus or
the CPU first — opens new programming and clustering
possibilities for heterogeneous clusters of such FPGAs.

These observations motivated us to reconsider the use of
MPI for ReH2PC platforms. Making MPI available as a
programming model for the ReH2PC domain would speed up
the development cycle of new HW clusters on one hand and
new applications on the other, since both sides would benefit
from an established interface.

In the remainder of this section we revisit the programming
model for ReH2PC and argue for the use of MPI. We first
give a very brief introduction to MPI as used in HPC systems
before justifying our effort to enable MPI for network-attached
FPGAs. Afterwards, we introduce our transpilation tool and
provide the details of the run-time modules implementation.

void MPI_Send(void* data, int count, MPI_Datatype datatype, int destination,
int tag, MPI_Comm communicator);

void MPI_Recv(void* data, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm communicator, MPI_Status* status);

void MPI_Bcast(void* data, int count, MPI_Datatype datatype, int root,
MPI_Comm communicator);

void MPI_Scatter(void* send_data, int send_count, MPI_Datatype send_datatype,
void* recv_data, int recv_count, MPI_Datatype recv_datatype, int root,
MPI_Comm communicator);

void MPI_Gather(void* send_data, int send_count, MPI_Datatype send_datatype,
void* recv_data, int recv_count, MPI_Datatype recv_datatype, int root,
MPI_Comm communicator);

void MPI_Reduce(void* send_data, void* recv_data, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm communicator);

Listing 1. Signatures of popular MPI calls.

A. The Message Passing Interface for CPU clusters

Over the last two decades, MPI has become the dominant
programming method used in HPC clusters. Its portability and
efficiency attracted a large base of users who embraced it as de
facto standard for developing an abundant number of scientific
applications.

In MPI vocabulary, a program that runs on a node is called
a process. A rank is a specific integer number assigned to
such a process during its initialization in order to identify
that process in a parallel multi-processing program. Processes
communicate with each other using a concept of message
passing. These messages are packets of data encapsulated into
envelopes that contain routing information. The transfer of data
is called a send and the receiving of data by a process is called
a receive.

The basic communication calls — and the calls to which all
blocking MPI routines can be reduced — are MPI_Send and
MPI_Recv. A data transfer involving these two routines is
said to be synchronized because data is only transmitted when
both sender and receiver are ready. This synchronization is es-
tablished by the MPI run-time environments of the concurrent
processes via a handshake process. The method signatures of
MPI_Send and MPI_Recv are shown in Listing 1.

The most powerful feature of MPI are the defined collective
routines. For example, with the single command MPI_Bcast
data are broadcasted from one rank — int root – to all
others. If an application does not need the same data at all
nodes, MPI_Scatter can be used to distribute different
portions of the data to different nodes. At the end of a
computation, MPI_Gather can combine them again into one
buffer using a single line of code. Alternatively, different data
can also be reduced, where the data from all nodes is combined
using a reducing function like MPI_SUM. The mentioned
routines are also presented in Listing 1.

Originally, MPI followed the SPMD paradigm. However,
different processes can be assigned to execute different parts
of the program based on their rank number. This SPMD
assumption simplifies the deployment of the program for users
and for the run-time environments. However, it only works
well if the cluster solely consists of homogeneous computation
nodes.

In the presence of heterogeneous nodes, the user may want
to tell the run-time environment which part of the program
runs better on which hardware. Here, Heterogeneity is meant



in terms of available cores, processor architecture, clock speed
and memory capacity, but may also include the presence of an
accelerator such as a GPU or an FPGA [19], [20]. To address
this issue, MPI provides the concept of affinity [21], [22]. The
notion of affinity allows a programmer to define which rank
should be scheduled on which host or group of hosts before
the program starts. As a consequence, the concept of affinity
weakens the SPMD paradigm of MPI but offers possibilities
to efficiently use heterogeneous clusters.

To not exceed the scope of this paper, we refer the reader to
standard references like [23] or [24] for more details on MPI.

B. Message Passing Interface for CPU+FPGA clusters

We want to enable HPC application developers to leverage
FPGAs as seamlessly as CPUs. This implies the execution
of existing HPC applications on ReH2PC clusters without any
code modification. Therefore, we propose to use a well-known
programming model and re-adjust it for FPGAs at compiler-
level. To achieve this goal, we use MPI with transpilation
to adapt the HPC application to the particular features of a
ReH2PC cluster.

In general, there are two ways of introducing a programming
model to ReH2PC. The first is to invent something completely
new, which is then optimized for this domain from the
beginning. The second way is to build on well known and
established concepts from older technologies and adapt them
to the new environment. This research will argue for the latter
case. Given the wide-spread adoption of MPI, we want to use
its standardized syntax and semantics as a single programming
model for ReH2PC clusters.

Programming languages offer two ways to synchronize con-
current computations: The nodes synchronize either implicitly
via a shared memory address space, like e.g. OpenCL, or
explicitly via the exchange of messages via a shared network,
like e.g. MPI. Furthermore, a programming model for large
scale ReH2PC clusters should be compatible with default OSI
models of communication and therefore should be independent
of the used communication topology and protocols. Since
network-attached FPGAs are distributed memory systems in-
terconnected with standard OSI protocols, the modeling of
concurrent programs with messages fits their architecture
better than the implicit synchronization with memory. In addi-
tion, the Register-Transfer Level implementation of a network
protocol stack typically provides a one order of magnitude
lower latency than a software counterpart. As an example, the
TCP stack of the network-attached FPGAs in [25] comes with
a latency of 2.8 µs which compares favorably to the average
~100 µs of an SW stack. This low latency network interface
renders the use of extra accelerators for MPI communication
and collective operations, like introduced by [26] or [27],
unnecessary.

Next, the parallel processing capabilities of FPGAs have the
potential to overcome the performance bottleneck related to the
sequential “compute first, communicate later” pattern of MPI
models on CPUs [12]. This conversion of buffers to streams is
possible during the transpilation step, as explained in the next

section. Our proposed approach to optimize MPI programs for
a specific hardware target at compile time is also a common
practice in performance tuning of petascale and exascale HPC
applications [28]. Of course, the consideration of run time
properties at compile time weakens the SPMD paradigm, but
as discussed in Section II-A the affinity concept of MPI has
similar consequences. In addition, [19], [20], [28] pointed out
that even the characteristics of similar CPUs, such as different
frequencies or available memory, should be taken into account
at compile time to leverage these clusters.

Finally, even in a pure stream-based environment like [12],
the implementation of collectives is not possible without
synchronizing messages between the run-time environments.
Hence, the abstraction level of the MPI API calls fits not
only the idea of distributed heterogeneous nodes but also the
paradigm of HLS languages and allows the detection of buffers
that should be turned into streams during compilation.

For all these reasons — the conform level of abstraction,
the compatibility with TCP/UDP/IP, and the fact that it is
an established standard in the HPC world — we decided to
develop an MPI implementation for ReH2PC clusters and not
to invent a new standard that is inspired by MPI.

III. TRANSPILATION OF MPI — OR HOW TO SQUARE THE
CIRCLE

MPI was designed for homogeneous CPU clusters and was
later adapted to heterogeneous cluster environments employing
concepts like affinity. We continue on this path by adapting
CPU code to FPGA designs by exploiting MPI semantics at
compilation time. Before we present the details of our proof
of concept implementation of MPI, we explain the main ideas
behind the transpilation of MPI.

A. Why transpilation can close the semantic gap

MPI is not only an API, but mainly a programming
model that follows the Bulk Synchronous Parallel computation
model. With MPI, the communication between processes and
the computing- and communication-phases within these pro-
cesses are clearly separated. Hence, a compiler knows the de-
pendencies between each sequential thread of the program and
the direction and timing of the dependencies. This situation is
very similar to the way many FPGA designs are described
by VHDL, Verilog, or HLS, i.e. a set of sequential processes
and their directed interconnections. Consequently, the abstract
concepts used to describe FPGAs and MPI clusters are dual.

To map MPI to its FPGA counterpart, some transforma-
tions are required that respect the special characteristics of
ReH2PC. The most dissimilar part is the strict sequencing of
computation, storing the result in buffers and the transmission
of these buffers. However, if the access pattern of an array
is known, modern HLS tools already turn this knowledge
into a parallel computation if possible. In order to perform
this transformation, the HLS compiler needs to recognize
important parameters like the size of the buffer, the operational
window, and the incoming and outgoing bandwidth, i.e. how
fast and at which interval the next or previous computation step
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can process the data. Therefore, even the explicit semantic of
the MPI API calls (like MPI_Send() and MPI_Recv())
can be converted to stream-like read and writes [29, p. 20].

Following this path, to map MPI to synthesizable HLS
programs, a transpiler requires the description of the final
cluster setup at run time. This description contains the number
of CPUs and FPGAs that will be part of the computation and
which ranks will be associated with which one of them. An
example of such a description for a cluster with 2 CPUs and
32 FPGAs in JSON format is provided in Listing 2.

Next, another mismatching concept between MPI and FPGA
clusters is the SPMD paradigm. In a pure software world,
SPMD simplifies development and debugging of parallel pro-
grams. This comes with relative low costs at run time, because
if a concrete rank only executes one part of the program, the
unused part of the binary is not touched and only “wastes”
space in memory.

However, this situation is very different for FPGAs, where
unused logic also wastes logic at run time and therefore limits
the overall resources that are available to solve the original
task. Consequently, an MPI transpiler for ReH2PC needs to
split the original SPMD program into a “Multiple Program,
Multiple Data” (MPMD) version to ensure that only used parts
of a specific node are also synthesized to (expensive) FPGA
logic and to avoid “dead code”. This split into multiple rank-
specific versions of the MPI program can also be done at
transpilation time using the described cluster description.

Third, collective routines are a powerful abstraction but
to execute them the MPI run-time environment needs to
determine the exact execution of each instance during the
operation of the program. For example, which node is the
sender and which are the receivers in the case of a specific
MPI_Bcast. By using the provided cluster description, these
decisions can also be brought forward to compile time. In
addition, at this point in the transpilation, the optimizations of
the MPI collectives, e.g. with neighborhood communications
[30] or hierarchical typologies [31], can be decided and
prepared. Furthermore, these optimizations can leverage the
advantages of ReH2PC environments and can schedule the
optimizations with respect to the properties of the final hard-
ware node. For example, combining or distributing network
messages is faster on FPGAs than on CPUs, and therefore the
overall performance of collective routines can be increased by
the transpilation. One example for such an optimization of

{
"nodes": {
"cpu" : [0, 33],
"fpga" : "1 - 32"

}
}

Listing 2. A cluster
description in JSON.

void MPI_Send(
// ----- MPI_Interface -----
stream<MPI_Interface> *soMPIif,
stream<Axis<D> > *soMPI_data,

// ----- MPI Signature -----
int* data, int count, MPI_Datatype datatype,
int destination, int tag, MPI_Comm communicator);

Listing 3. Vivado HLS compatible signature
for MPI_Send.

MPI_Scatter is given in Figure 2.
In addition to all these adaption and optimization steps, one

additional advantage of using a transpiler at this abstraction
level is the possibility to generate detailed warnings or errors,
because subsequent synthesis steps may miss some informa-
tion to guide users in a helpful way.

Finally, all the above adaptations enable the transpilation
tool to emit a specific FPGA code in the language of the
targeted HLS tool. The details of our transpilation process are
described in the following.

B. How to transpile

Our proof of concept implementation transpiles MPI C code
to synthesizable HLS code for Xilinx Vivado. The number of
supported languages is therefore limited to a single input and
a single output language but it is sufficient to demonstrate the
general concept of transpilation. Our transpilation tool is called
ZRLMPIcc and it builds on top of our previous research [18].

First, we remove all parts of the code that will not run on the
FPGA using a static code analysis investigating the description
of the cluster at compile time. We feed the code to a C
preprocessor1 and then parse the MPI C code to an Abstract
Syntax Tree (AST) using the python library pycparser2.
The AST is a representation of the program in tree structure,
which gives us a powerful tool to manipulate the program.
Using the provided JSON description of the cluster and the
generated AST, we set the rank and size variables, as if
the program were to be executed, and then determine which
part of the code will not be executed by the FPGA nodes.
Alternatively, the user can guide this code split by manually
annotating the code with ZRLMPI_SW_ONLY and DEBUG
pragmas. These optimizations avoid the instantiation of “dead
code” in the FPGA, which would waste FPGA resources.
However, by using the AST representation, the transpiler can
detect if the execution flow of a program is the same for
some ranks. Therefore, we avoid generating an identical bitfile
multiple times.

Second, constant values, such as the cluster size, are prop-
agated through the AST to allow further optimizations by the
HLS tools. In addition, a constant folding is performed.

Afterwards, still using the AST and the information about
the rank associations, the transpiler analyzes the collective
routines and substitutes the original code with the necessary
steps that each rank has to execute. One example of such
a substitution is given in Figure 3 for the MPI_Scatter
routine. Since the explicit MPI semantic states all necessary

1GNU project C and C++ compiler (GCC), version 9.1.0
2pycparser: Complete C99 parser in pure Python, version 2.19: https://

github.com/eliben/pycparser

https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
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MPI_Comm_size( MPI_COMM_WORLD, &size );
....
int ldim = DIM/size;
int start = rank * ldim;
....
MPI_Scatter(&grid[0][0], ldim*DIM, MPI_INTEGER,  &lgrid[start][0], ldim*DIM, MPI_INTEGER,
                                                                      0, MPI_COMM_WORLD);
...

known due to
cluster description

known due to constant
propagation

root rank

for(int i = 0; i<SIZE; i++) {
  int chunk_size = ldim*DIM;
  int *new_start = &grid[0][0] + i*chunk_size;
  if(i == 0) {
    memcpy(&lgrid[start][0], new_start,
           chunk_size * sizeof(int)); 
    continue;
  }
  MPI_Send(new_start, chunk_size, MPI_INTEGER,
           i, SCATTER_TAG, MPI_COMM_WORLD);
}
...

original start

...
MPI_Recv(&lgrid[start][0], ldim*DIM, 
         MPI_INTEGER, 0, SCATTER_TAG, 
         MPI_COMM_WORLD,
         MPI_STATUS_IGNORE);
...

datatype

Transpilation

Fig. 3. Transpilation example of MPI_Scatter. All parameters of the
replacement snippets are based on the original API call, but only some of
them are highlighted as examples in the figure.

information, ZRLMPIcc knows the root rank for this routine,
the datatype of the buffer, and the original start address. Com-
bining this with the information about the cluster enables the
transpiler to replace the collective routine with the equivalent
MPI_Send and MPI_Recv calls for each rank. Based on the
source and target buffers, a memcpy is also inserted for the
root rank if necessary. During this step, optimizations of the
collective routines can be prepared, e.g. as sketched on the
right hand side in Figure 2. If this option of the transpiler
is enabled, the topology of the optimized collective routines
are automatically derived from the cluster description by an
algorithm which decides which ranks become distributing
nodes and which ranks receive from them.

Fourth, using the AST, ZRLMPIcc ensures that the gener-
ated C code for the FPGA is synthesizable, e.g. by renaming
the main() function and passing the necessary HLS stream
data structures to the MPI methods. This is necessary because
the MPI API calls may be called multiple times by the
application, but we have only one connection to the run-
time environment in the hardware. Hence, the objects of the
interface streams to the run-time environment must be present
in the HLS program at all times. One signature of a modified
MPI API call is listed in Listing 3. There are additional
methods for the other API calls as well as versions with the
data parameter of type float. From this rewritten AST we
generate a C code file for the FPGA ranks. These generated
C files may still require the information of the rank at run
time, if the remaining part of the code does not differ between
different FPGA nodes.

Afterwards, the generated code will be inserted into an
HLS project and synthesized. We implemented the MPI API
calls in an HLS synthesizable library, which also provides
the necessary header file mpi.h. This library contains also a
wrapper for the main function to control the start and stop of
the application. These control signals are handled by the run-
time environment to prevent the FPGA nodes from starting
the execution before the complete cluster is ready.
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Fig. 4. The SRA of a ZRLMPI FPGA design and the equivalent components
in a CPU. The MPI application is instantiated inside the Role and connected to
the MPE core through one MPI_Interface and two AXI4-Streams. The MPE
is connected to the network stack inside the Shell (not shown).

IV. IMPLEMENTATION

This section presents ZRLMPI, a proof of concept im-
plementation for running MPI applications on heterogeneous
clusters with FPGA and CPU nodes. This work extends the
ZRLMPI framework first introduced in [18]. The overall
architecture is depicted in Figure 4 and consists of a Shell
and a Role (IV-A), a ZRLMPI run-time environment (IV-B and
IV-D) that is connected with the transpiled application via the
ZRLMPI interface (IV-C), and the CPU run-time environment.

Finally, we introduce our one-click solution in IV-E.
A. FPGA Architecture Schema

The Shell Role Architecture (SRA) is a design pattern that
can be found in many recent FPGA designs. The idea is
to separate the platform-specific parts from the application-
specific parts in order to increase the re-usability of both
platform and application. The first part is called the Shell and
contains all necessary I/O components, the network stack, and
all required run-time modules. The Shell is the conceptual
counterpart of the Operating System (OS). The application-
specific part of the logic is referred to as Role and corresponds
to the CPU application in Figure 4. An SRA always requires
a fixed interface between Shell and Role, otherwise the Shell
would have to be modified for every application and vice
versa. This Shell Role Interface (SRI) should be as generic as
possible, for a single Shell to support a wide range of Roles.

The logic of the Role is typically controlled by the user and
deployed using Partial Reconfiguration. On the other side, the
logic of the Shell is controlled by the platform provider, to
guarantee the integrity of the infrastructure. An example for
an SRA can be found on the left-hand side of Figure 4.
B. ZRLMPI components and scope

The goal of ZRLMPI is to provide a transpiler for the user
to translate her/his original MPI code, which runs with e.g.
OpenMPI or MPICH, to a partial FPGA bitstream as well



as a SW binary for the CPU. Afterwards, the user can start
his/her program simply by launching the ZRLMPI execution
environment (ZRLMPIrun), which takes care of configuring
deploying and executing the application on a cluster of CPUs
and FPGAs.

In order for ZRLMPI to work as a platform and appli-
cation independent programming framework, we implement
a specific run-time module for the FPGAs and one for the
CPUs, as depicted in purple in Figure 4. The former is
called the Message Passing Engine (MPE), and its SW
counterpart is named ZRLMPIlib. These run-time modules
implement the ZRLMPI protocol that synchronizes all FPGA
and CPU nodes as specified by the MPI API and connect
the application to the FPGA communication interfaces or the
OS. The FPGA run-time environment will be addressed in
subsection IV-D. The CPU counterpart is written in C++ and
linked as shared object to the user application at run time.
To compile the application inside the FPGA and connect
it with to MPE, a ZRLMPI HLS library was created
that maps the API calls to streams. This HLS library is the
implementation of the "mpi.h" header that is included by
the application. It implements all necessary MPI APIs as
shown in Listing 3 and maps these to the stream interfaces
of the MPE, as depicted by the purple arrows in Figure
4. The FPGA and CPU run-time environments ensure the
synchronous execution of the MPI API calls using handshakes.
For the sake of this demonstrator, we only need to sup-
port the MPI_Init, MPI_Comm_rank, MPI_Comm_size,
MPI_Send, MPI_Recv, MPI_Scatter, MPI_Gather
and MPI_Finalize methods.

C. MPI interface in the FPGA

Apart from data streams, the Role application needs to send
the meta data of the MPI API calls to the MPE. The type
of this meta data stream is shown in Listing 4 and is also
marked by a purple arrow in Figure 4. ZRLMPI aims at being
portable to other FPGA environments while reducing the effort
of adapting and deploying one or multiple MPI applications
as Roles. Therefore the interfaces from and to the runtime
environment are as generic as possible. In the network-attached
case, the MPI run-time environment must also ensure that the
user does not break out of his subnetwork or attack the DC
network. Therefore we decided to make the FPGA run-time
environment part of the Shell in our design.

Consequently, the meta data stream between app and MPI
run-time module must be implemented at HDL level as part
of the SRI. Since AXI4-Streams are commonly used as data
paths inside FPGA designs, we decided to use them for im-
plementing the MPI interface between the ZRLMPI run-time
environment and the FPGA application. Next, to keep the SRI
simple, there should not be a stream for every possible type
of call, instead there should be one generic interface, which is
mapped to the original MPI calls by a small library inside the
Role. Finally, since every MPI call is always initiated by the
application, the MPI_Interface stream is only an output
for the Role. For example, the specification of MPI_Recv

type tMPI_Interface is record
mpi_call : std_logic_vector( 7 downto 0);
count : std_logic_vector(31 downto 0);
tag : std_logic_vector(31 downto 0);
rank : std_logic_vector(31 downto 0);

end record tMPI_Interface;

Listing 4. VHDL description of the MPI_Interface type.

guarantees that only the data that fits the requested data type
and came from the right source is returned.

D. FPGA run-time module

The ZRLMPI run-time environment implementation inside
the FPGA is a Finite State Machine (FSM) that processes the
messages of the application and maps them to the ZRLMPI
protocol and the FPGA network stack. The MPE is connected
to the Role through one MPI interface, as shown in Listing 4,
and two data streams, as depicted in Figure 4. On the other
side, the MPE is connected to the data path of the network
stack (UDP or TCP). Only one MPI interface to the application
is accurate, because according to the MPI specification, only
one MPI task can be active at a time. In order to be compliant
with the MPI specification, the MPE only starts acting upon
a new mpi_call on the MPI_Interface.

Additionally, the MPE needs to map IP addresses and ports
to the rank as specified by MPI and vice versa. Therefore,
ZRLMPI provides a mapping table that is distributed to all
nodes of the heterogeneous cluster during their deployment.
For debugging, the MPE also provides internal status informa-
tion, like how many packets have been processed, the internal
state of the protocol engine, or a dump of the last processed
packet, to the management functionality of the Shell, via an
AXI4-Lite bus, as sketched in Figure 4. Finally, the MPE
receives the node rank information and propagates this to the
Role.
E. ZRLMPIrun: The one-click solution

The two key elements of ZRLMPI are the possibility to
bring real MPI code to FPGAs and that the whole ReH2PC
cluster can be started with only one command, similar to other
MPI implementations. The first key objective is achieved by
ZRLMPIcc. For the second goal, we need an FPGA platform
that allows the distribution of the partial bitfiles of the Role
and the configuration of the network interfaces within the
FPGA in an automated fashion. Also, we need to distribute the
information about the individual rank and the cluster routing
table to the FPGA bitfiles. We implemented a deployment
framework in python that allows to distribute the partial bitfiles
of the application to the FPGAs automatically and launches
all CPU instances. This program is called ZRLMPIrun.

V. EVALUATION

To evaluate our approach of using MPI with transpilation
as programming model for ReH2PC, we implemented a two-
dimensional stencil application using ZRLMPI.

A. Experimental Setup

We use the FPGA platform introduced in [2] to run our ex-
periments. This platform integrates 32 Kintex KU60 FPGAs3
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TABLE I
JACOBI MPI APPLICATION EXECUTION TIMES AND POWER USAGE

Data size cluster
size

CPU only ReH2PC
(1 CPU, size-1 FPGAs)

ms /
iteration

avg.
Watt

ms /
iteration

avg.
Watt

16x16 2 23.33 254.49 7.59 136.24
256x256 4 1670.90 508.48 444.77 154.21
256x256 8 2136.72 1018.08 842.58 187.68

1024x1024 8 43120.16 1017.99 7763.87 187.09
1024x1024 16 36261.91 2036.16 9311.71 253.23
1024x1024 32 41021.51 4072.33 20939.65 387.99

256x256 (with
tree optim.) 8 1686.55 1017.68 637.87 187.97

with one Intel FM6000 switch onto a passive water cooled
carrier board. The switch acts as a leaf switch that aggregates
32 10GbE links from the FPGAs and connects them to the core
of the DC network via 8 ∗ 40GbE up-links. Each FPGA can
access 16GB of DDR4 RAM. The clock cycle of the FPGAs
is 6.4 ns. For our benchmark we use only UDP.

Next, we need a management architecture that allows
us to distribute the partial bitfiles and necessary run time
information to the FPGAs in an automated fashion. The
system architecture described by [3] allows the deployment
of applications by sending the partial bitfile to the FPGA, as
an HTTP POST call. We therefore use this framework as the
basis for ZRLMPIrun.

For the CPU examples, we use bare metal servers with an
Intel i7 CPU 960 @ 3.20GHz and RHEL 7.8 as OS.

B. Jacobi-2D example application

We implement the simple Jacobi iteration for approximating
the solution of a two-dimensional Laplace equation (also
called steady-state heat equation). A code snippet containing
the main execution loop is given in Listing 5. This source
code is compiled with ZRLMPIcc to run on both FPGAs
and CPUs. The deployed ReH2PC clusters always consists
of size-1 FPGAs and one CPU. We executed this example
with different sizes on CPU only and ReH2PC clusters. The
execution times and power measurements are shown in Table
I. The measured execution times per iteration are averaged
over five iterations and timed on the root node. The power is
measured externally per node and accumulated for the used
cluster. On average, a CPU node consumed 127 W and an
FPGA node 8.5 W. To make the execution times comparable,
we ensured that all cluster setups have similar ping times. We
used the 1024x1024 application with cluster size 8 to evaluate
the resource overhead of the FPGA MPI run-time environment
in comparison to the FPGA app. This comparison is shown in
Table II.

In a second step, we wanted to evaluate our proposed
optimization of collectives in ReH2PC as discussed in Section
III-A. The result is also presented in Table I. The topology
automatically derived by ZRLMPIcc for the test case with
tree-optimized collectives is depicted in Figure 5.

The result shows that a cluster that leverages FPGAs is
always faster than a pure CPU setup and our ReH2PC ap-
proach outperforms the classical HPC by a factor of 4 on

TABLE II
RESOURCE USAGE OF ZRLMPI IN A XCKU060

Resource Available Used
Total MPE APP

LUT 331680 113832 1940 1715
LUTRAM 146880 11103 8 0
FF 663360 132553 1744 1058
BRAM 1080 609 3 320

CPU

FPGA FPGA

FPGA
(distributing node)

FPGA
(distributing node)

FPGA FPGAFPGA

Fig. 5. Optimized topology for MPI_Scatter/Gather for 8 nodes.

average, despite the small sizes of the testcases and the unop-
timized code. The power consumption of the larger ReH2PC
clusters are one order of magnitude lower than the CPU only
versions. The chosen example application requires significant
synchronization between the nodes and consequently becomes
communication bound at larger cluster sizes. The comparison
of the different 1024x1024 test cases reveals that the ReH2PC
turns earlier to communication bound then the CPU clusters.
Increasing the nodes from 8 to 16 for the ReH2PC for the same
workload decreases the performance, in contrast to the CPU
only cluster. Hence, the FPGAs are also measurably faster in
computation than CPUs. In the smaller 256x256 test case both
clusters are communication bound.

We argued earlier for the use of MPI on ReH2PC clusters
because of the low latency of the hardware communication
stack in FPGAs. The comparison with the optimized tree
topology highlights this important feature. The optimization
of the structure (see Figure 5) is not reducing the bandwidth
of the CPU node (as depicted in Figure 2), but the numbers
of hand-shakes between the root CPU and the first layer of
FPGA nodes. Additionally, some communication edges are
parallelized. In this case, the comparison of the un-optimized
vs. optimized 256x256/8 test cases reveals a speedup of
1.27 (2136.72 ms → 1686.55 ms) for the CPU and 1.32
(842.58 ms → 637.87 ms) for the ReH2PC cluster. All
versions of the 256x256/8 test case are communication bound
and therefore the parallelization of communication increases
performance for the CPU only and ReH2PC cluster. However,
the observation that the even more communication bound
ReH2PC cluster — because the FPGAs compute faster — has
a higher speedup due to the tree optimization can be attributed
to the simple fact that FPGAs and not CPUs were used as
distributing nodes (see Figure 5). Consequently, if the FPGAs
were not faster in processing the synchronizing handshakes,
the ReH2PC cluster would have the same speedup like the
pure CPU cluster and would be approximately 46 ms slower
in each iteration. Thus, the offloading of communication to
the FPGA nodes is increasing the performance additionally.



#include "mpi.h"
int main() {
int rank, size;
MPI_Status status;
MPI_Init();
MPI_Comm_rank(MPI_COMM_WORLD, &rank );
MPI_Comm_size(MPI_COMM_WORLD, &size );
//... data initialization ...
int local_grid[local_dim+2][DIM];
for(int l = 0; l < max_iterations; l++) {

MPI_Scatter(&grid[0][0], local_dim*DIM, MPI_INTEGER, &local_grid[start_line][0],
local_dim*DIM, MPI_INTEGER, 0, MPI_COMM_WORLD);

//exchange halo regions
if(rank == 0) {

for(int r = 1; r < size; r++) {
int first_line = r*local_dim;
int last_line = (r+1)*local_dim -1;
if(r != 0)
first_line--;

if(r != size-1)
last_line++;

MPI_Send(&grid[first_line][0], DIM, MPI_INTEGER, r, 0, MPI_COMM_WORLD);
MPI_Send(&grid[last_line][0], DIM, MPI_INTEGER, r, 0, MPI_COMM_WORLD);

}
for(int i = 0; i < DIM; i++)

local_grid[border_endline][i] = grid[border_endline-1][i];
} else {
MPI_Recv(&local_grid[halo_startline][0], DIM, MPI_INTEGER, 0, 0,

MPI_COMM_WORLD, &status);
MPI_Recv(&local_grid[halo_endline][0], DIM, MPI_INTEGER, 0, 0, MPI_COMM_WORLD,

&status);
}
for(int i = 1; i < local_dim+1; i++) {

for(int j = 0; j< DIM; j++) {
if( (i == 0 && absoulte_start == 0) || (i == local_dim && absolute_end ==

DIM-1) || j == 0 || j == DIM -1)
local_new[i][j] = local_grid[i][j];

else
local_new[i][j] = (local_grid[i][j-1] + local_grid[i][j+1] + local_grid[i

-1][j] + local_grid[i+1][j])/4.0;
}

}
MPI_Gather(&local_new[result_start_line][0], local_dim*DIM, MPI_INTEGER, &grid

[0][0], local_dim*DIM, MPI_INTEGER, 0, MPI_COMM_WORLD);
}
//...result verification...
MPI_Finalize();
return 0;

}

Listing 5. Code snippet for the Jacobi 2D application.

Finally, the resource usage of the ZRLMPI run-time module
within the FPGA is in the range of 1 – 5 % of the total
available resources.

In summary, our proof of concept implementation is able
to leverage the latency advantages of FPGAs with negligible
resource overhead while providing a one-click solution for the
user. Roughly speaking, using ZRLMPI on a large ReH2PC
cluster gets the very same job done in 1/4 of the time (speedup
2.0 – 5.6) and consumes only 1/10 of the power (9% – 53%),
compared to a pure CPU cluster.

VI. RELATED WORK

In 2006, a group from the University of Toronto started to
implement their own lightweight MPI version, called TMD-
MPI, with a focus on the ReH2PC domain [17], [29]. Their
work starts with a new design flow to deploy an MPI ap-
plication on multiple FPGAs. They introduce their PCIe-
based communication network and a “Message Passing En-
gine” to map the MPI behavior to their environment. The
authors implemented a software and a hardware version of
their library, which supports some very basic MPI calls (i.e.
MPI_Send and MPI_Recv). Finally, they demonstrated the
functionality of their platform using the heat equation and
compared the results to PowerPC and MicroBlaze nodes. The
team in Toronto continued their research with their recent
Galapagos cluster and provided network and PCIe abstractions
and a method to virtualize the FPGA [13][14]. The cluster
consists of six FPGAs, but they did not continue the support
of MPI.

In a recent effort, Naylor et al. presented “Tinsel”, an
FPGA-centered hyper-threaded RISC-V framework and a cus-
tom FPGA cluster with 12 Stratix V [15]. Tinsel uses a proces-
sor overlay with a full custom network on chip interconnect
to support event-driven parallel programming models. Their
messaging routines look similar to the MPI functions, but
rely on the custom 2D mesh communication arrangement and
consequently make the generalization of Tinsel difficult.

Also in 2019, De Matteis et al. from the ETH Zurich
presented a “Streaming Message Interface” as ReHPC pro-
gramming model [12]. They target eight Stratix 10 FPGAs
connected in a 2D torus, so that each FPGA can only reach
four other FPGAs. Hence, message forwarding and routing
for this custom topology is part of their framework. The
authors argue that due to pipelining and vectorization, FPGAs
are not compatible with the classical MPI API and thus, the
“Streaming Message Interface does not assume that buffers are
first computed and then communicated — instead, sending a
message is integrated into the pipeline.” [12, p. 2]. They design
a new API for sending streams that is heavily inspired by
MPI itself, but optimized for pipelining within the FPGA. For
a message of size one, their API is identical to the original
MPI. Consequently, their framework can only be used for pure
FPGA clusters.

A completely different approach was pursued by Gao et
al. in [26]. To accelerate HPC clusters, they offload only the
MPI_Barrier routine to the bus-attached FPGA and can
achieve a significant reduction in latency for the execution of
the barrier. Very recently, a group from the Boston University
followed a similar way [32] and related technologies can also
be found as part of commercial products like [27]. However,
this approach offloads part of the MPI run-time environment
to FPGAs but it is not accelerating the actual computation
workload.

VII. CONCLUSION

The rising demand for energy-efficient compute power in
HPC environments leads to a wider adaption of reconfigurable
hardware. With our proof of concept we wanted to exhibit
the potential of MPI to become a standard for Reconfig-
urable Heterogeneous High-Performance Computing clusters.
We show that this goal can be achieved if the FPGAs are
directly attached to the interconnection network of the cluster
and the application code is transpiled using the final cluster
description. Our results show that the optimization for a
specific cluster setup at compile-time can leverage FPGAs
in HPC clusters. Furthermore, the heterogeneous nature of
ReH2PC offers new ways to optimize collective operations
for additional performance increases. The presented proof of
concept implementation of MPI for ReH2PC requires further
research to increase the coverage of MPI routines, optimize
the handshake implementations and to also include design-
space exploration of the FPGA parts. Finally, we hope that
our approach to augment the MPI standard with a transpiler
that auto-tunes applications for particular cluster setups will
bring FPGAs and CPUs to work together efficiently from a
single source of code.
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